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Abstract 

Transformers are crucial elements in the transmission and distribution of electrical energy. The importance 

of diagnosing these equipments are two-fold: (1) the necessity of service reliability and (2) the likelihood to 

avoid economic and environmental concerns. Under service conditions, the electrical and thermal stresses or 

chemical contaminants may degrade the insulation oil inside the transformer and cause incipient failures or 

reduce its service life. Partial discharges well recognized to be among the most common stresses that can lead 

to slow but steady degradation of insulating oil in transformers. The present work aims at understanding the 

influence of low energy electrical discharge on mineral oil based on two spectroscopic methods: FTIR 

spectroscopy and Frequency Domain Spectroscopy (FDS). An electrical fault has been created by continuous 

discharge of 10 kV on the surface of various oil samples according to the ASTM D6180. From the FDS results, 

it was found that the amount of charge carriers and moisture increased with the aging time elapsed that 

influences the conduction phenomena and in turn, increases the dissipation factor. These results are confirmed 

by the FTIR results, which show that the intensity of the peak absorbance of the C–H and C-C functional group 

decreased with aging. The application of these two methods may help monitoring the condition of oil. A 

combined FTIR and FDS measurements highlighted the correlations between modifications in electrical 

properties and changes in the chemical structure of the oil under electrical accelerated ageing. 
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1. INTRODUCTION  

 

In service condition, the insulating oil in a 

transformer undergoes a slow but steady degradation 

under combined thermal, electrical and chemical 

stresses. This in turn affects the physicochemical 

properties. Consequently, the dielectric response, 

including the electrical conductivity along with the 

dielectric dissipation factor and permittivity, which 

are some of the important parameters to monitor the 

safe operation of the transformer, is affected. These 

properties are also important parameters describing 

the liquid’s function as an insulant [1][2]. Any 

significant increase in the conductivity and dielectric 

dissipation factor may indicate that the oil is no 

longer able to perform its vital function [2]. 

In this paper, a combination of two spectroscopy 

methods is explored for assessing the condition of a 

mineral oil: FTIR spectroscopy for chemical 

characterization and a Frequency Domain 

Spectroscopy (FDS) for assessing the electrical 

properties. The influence of the electrical aging on 

the electrical and chemical properties of transformer 
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oil were investigated, and the spectroscopic 

measurements performed to understand the aging 

process and diagnosing the transformer condition.  

New oil samples were submitted to electrical 

discharge according to the ASTM Test D6180 [4]. 

After that, these samples were characterized by FTIR 

and FDS measurement techniques.  

The results obtained were analyzed and the 

physical mechanisms behind both spectra were 

interpreted.  

 

2. EXPERIMENTAL PROCEDURE 

 

2.1. Preparation of the samples 

A mineral oil LUMINOL-TM from Petro-

Canada was used in this experiment. The procedure 

of oil degasification and dehumidification was 

performed as follows. The oil samples were stored in 

a beaker and placed in a KIMAX Desiccators with 

Detachable Stopcock Valve. To avoid moisture 

absorption from the samples, a quantity of silica gels 

were placed in the desiccators. The preparation 
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guarantees, very low water content (less than 5 ppm 

for transformer oil). 

The test arrangement setup consists in a Merell-

based test cell type, as specified in the ASTM Test 

Method D6180 (Figure 1). The HV electrode 

consists in a cylindrical copper electrode of 15 mm 

(0.6 inches) in diameter and 10 mm long sealed in a 

500 ml Erlenmeyer glass. The electrode was fixed in 

the center of the discharge cell with a 1 inch gap 

above the oil surface. The pressure inside the test cell 

was reduced down to 1Torr (133 Pa). After this 

degasification, a 10 kV high-voltage discharge was 

generated above the oil sample during 5 h; 12h, 24h, 

50h and 75h [2-4]. 

 
Fig. 1. Overview of the test method for stability of 

oil under electrical discharges according to the 

ASTM D6180[4]. (1) Erlenmeyer; (2) foam of oil 

after voltage application; (3) glassware containing 

salted water; (4)high-voltage electrode; (5) low-

voltage electrodes connected to ground 

 

2.2. Frequency Domain Spectroscopy (FDS) 

The Insulation Diagnostic Analyzer IDA200 was 

used to assess the dielectric proprieties of the fluid 

samples over a wide range of temperature using the 

liquid test cell type 2903 for liquid insulation 

manufactured by Tettex [3]. During measurements, 

the test cell’s temperature was fixed at 90 °C in a 

controlled oven. The frequency range of the 

measurements was set from 10-3 MHz to 1 kHz, and 

the oil was sampled for analysis after 5, 12, 24, 50 

and 75 h under electrical discharge. 

 

2.3. FTIR Spectroscopy  

The FTIR is a chemical technique used to assess 

material’s functional groups [5]. It is therefore 

suitable for monitoring changes in the 

physicochemical properties of the materials before 

and after ageing.  The investigations were carried 

out with a Nicolet Protege TM 460 ESP, FTIR 

spectrometer. The infrared spectra were collected in 

the transmission mode over the wave ranges varying 

from 4000-500 cm1 with an optical resolution of 1.0 

cm-1, using 32 scan repetitions with a resolution of 

4cm-1.The FTIR spectra enables monitoring the 

chemical and physical structural changes of the 

transformer oils after electrical discharge for 

different discharge application durations. 

3.  RESULTS AND DISCUSSION 

 

3.1. FDS Analysis of the insulating liquids 

Figure 2 shows the dielectric responses of the 

permittivity versus frequency for mineral oil at 

different discharge application durations. Recall that 

the relative permittivity is oil’s chemical 

composition dependant [6]. 

 
Fig. 2. Real part of the complex permittivity of the 

oil samples. The discharge application duration 

acted as a parameter 

 

From Figure 2, it can be noticed that the real part 

of the permittivity of the transformer oil is almost not 

affected by ageing and is around 1, in the frequency 

ranges from 0.1 Hz to 1000 Hz. This is probably due 

to the fact that the composition of carbon group does 

not vary considerably to affect the value of the real 

permittivity [6]. It can be concluded that the relative 

permittivity of insulating oil is almost not affected 

by the electrical aging process at industrial 

frequencies. The same results were reported in other 

studies [7] [8]. Figure 2, shows an increase in the real 

part of the complex permittivity at low frequency. 

This may be traced to the space charge polarization 

processes [9, 10]. 

With long discharge application durations, more 

charge carriers are generated which results in an 

increase in the conductivity of the oil. With more 

charge carriers, the space charge polarization 

increases with concomitant increase in the real part 

of the complex permittivity [7, 9]. 

Out of the Figure3, it can be seen that the 

imaginary part of the complex permittivity decreases 

with frequency over the whole range with a slope of 

approximately at -1. It indicates a near-constant 

conductivity of the mineral oil’s ionic conduction 

process and this is indicative of Maxwell-Wagner 

interfacial polarization [7, 9, 11]. 

Figure4 shows the variation in the loss factor 

(Tanδ) versus frequency. At different duration of 

electrical aging, the loss factor decreases with 

frequency, and increases with aging elapsed time. 

The applied electric field may lead to the 

dissociation of impurities and the consequent 
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formation of mobile ions. Recall that at lower 

frequencies, the loss factor is dominated by 

conduction of charged particles [12]. 

 
 

Fig. 3. The imaginary part of the complex permittivity  

of the electrically-stressed aged oil 

 
Fig. 4. The loss tangent Tanδ of the  

electrically-stressed aged oil 

 

In service conditions, very few stable molecules 

may accumulate enough energy for electronic 

transitions during the elastic collisions caused by 

thermal agitation at the origin of the homolytical 

breakdown of weak valence bonds responsible for  

free radicals generation. Free radicals may randomly 

interact through reduction-oxidation reactions and 

build up charge carriers, which consequently 

increase the power factor of an insulating oil [13]. 

Figure 5 shows the conductivity of the oil 

samples at different electrical ageing duration. It can 

be seen that the conductivity increases with time, and 

remains constant at low frequency. 

Figure 6 indicates moisture generation with 

electrical discharge elapsed time. The conductivity 

of an insulating material is known to be affected by 

moisture content and charge carriers. Recall that 

oil’s ageing byproducts are generally polar in nature 

and may therefore affect conductivity as well as loss 

factor [14]. 

 

Fig. 5. The real part of Conductivity  

σ'(Ω-1cm-1) of the electrically aged oils 

 
Fig. 6. Change in moisture of mineral oil caused  

by the low electrical discharging 

 

The conductivity of mineral oil increases with 

aging as more charge carriers are generated due to 

physical and chemical degradation. 

More investigations onto the chemical 

composition are needed to assess ageing by-product 

in mineral oil, especially after electrical stress. 

Several studies [15-17] have focused on the analysis 

of the behavior of the transformer insulating oil 

during aging by infrared spectroscopy, based on the 

fact that, the deterioration of  the properties of 

insulating materials, over time is evidenced by 

changes in the chemical structure. 

 

3.2. FTIR spectroscopy results 

The change in structure of the mineral oil during 

electrical ageing was assessed by using Fourier 

transform infrared (FTIR) spectroscopy. 

Transformer oil basically consists in a mixture of 

various naphthenic, paraffinic and aromatic 

molecules. It contains cyclo-alkane (CN), alkane 

(CP) and aromatic hydrocarbons (CA). During the 

electrical aging process, changes must have occurred 

in a carbon group component affecting the 

performance of the transformer oil [6]. Table 1shows 

the wave number and its functional group for virgin 

oil [18]. 
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Table 1. FTIR analysis for virgin oil [18] 

Wave number (cm-1) Functional group 

2921 C-H (Alkane &  Stretching) 

2853.3 C-H (Alkane &  Stretching) 

1458.23 C-H (Methylene  & Bending) 

1376.44 O-H (Alkohol & Bending) 

722.31 C-C (Methylene & Skeletal 

vibration) 

 

Figure 7 shows the FTIR spectrum of aged oil 

samples, with the electrical discharge duration acting 

as parameter. 

 

 
 
Fig. 7. The FTIR absorbance spectra in the range of 400 

cm-1- 4000 cm-1ofmineral oil samples. The electrical 

discharge application duration acted as a parameter 

 

The low electrical discharge energies led to the 

breaking of carbon-hydrogen and carbon-carbon 

bonds. The physicochemical structure of insulation 

oil is greatly affected causing deterioration with 

electrical discharge time elapsed. Generally, the 

aging and degradation of the insulating oil is 

associated to oxidation, moisture and dissolved 

contaminants from the solid materials [19]. 

As shown in figure 7, there is a significant 

difference between FTIR spectra of samples. This 

confirms that low electrical discharge influences the 

chemical structure of transformer oil. The peaks are 

observed at 722.2 cm-1 and 741.5 cm-1 (Figure 8) 

assigned to (C-H) out of the plane stretching of the 

saturated carbon-carbon bonds [20].  

The peaks between 1300 cm-1- 1500 cm-1 are 

presented in Figure 9. As shown in this figure, the 

peak positions for 1459.8 and 1376.9 cm−1, are 

attributable to (C-H) bounding vibrations that result 

in the similar trend as the main −CH2 and −CH3 

vibrations. Figure 10 shows some peaks at 2921.6 

and 2852.2 cm−1 wavelenghts. These peaks are 

assigned to (C-H) stretching of the saturated carbon-

carbon bonds and attributed to −CH2 vibrations 

followed by a small peak at 2954.4 cm−1related to 

−CH3 vibrations [15, 21]. 

 
 

Fig. 8. FTIR absorbance spectra in the range of 700 

cm-1- 800 cm-1 of mineral oil during electrical aging 

 

 

 

 
 

Fig 9. FTIR absorbance spectra in the range of 1300 cm-1 

–1500 cm-1of mineral oil during electrical aging 

 

 
 

Fig. 10. FTIR absorbance spectra in the range of  

2700cm-1- 3100 cm-1ofmineral oil during electrical aging 

 

Figure 8 shows an increase in the intensity of the 

absorbance peaks approximately around 720 and 

742cm-1. This rise appears more intensive after 24 
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hours of electrical discharge, which indicate an 

increase in the alkane C-H bending groups. 

From Figures 9 and 10, it can be observed that 

the intensity of the absorbance peaks decreases at, 

1459.8, 2852.2, 2921.6, 2954.4 wavelengths. The 

decrease in the absorption intensity of CH2(2921.6 

cm-1, 2852.2cm-l, 1459.8cm-1) and CH3 (2954.4 cm-

l) in the aged oil samples can be traced to the 

breakage of some of the C-C and C-H bonds in the 

mineral oil [22] due to a slow deterioration process 

under the  electrical discharge energy. In this case, 

fault gases can be then produced. 

 
Table 2 shows the energies required for breaking the 

molecular bonds of hydrocarbons [23] 

Bonds hydrocarbons Bond energies(kJ/mol) 

 

C-C 

Aliphatic saturated 315 – 380 

Aliphatic 

unsaturated 

255 – 960 

Aromatic 230 – 480 

 

C-H 

Aliphatic saturated 395 – 440 

Aliphatic 

unsaturated 

320 – 560 

Cyclic 310 – 485 

Aromatic 270 – 480 

 

Under electrical fault, the scission of some of the 

C-H and C-C bonds may occur, since the C-H bonds 

are weak. Low-energy faults may therefore break 

these bonds to form active hydrogen atoms and 

hydrocarbon fragments. These fragments may then 

recombine to form fault gases such as hydrogen (H-

H), methane (CH3-H), ethane (CH3-CH3), ethylene 

(CH2 = CH2) or acetylene (CH≡CH) [24]. 

 

4. CONCLUSION  

 

In this contribution, the electrical and chemical 

properties of mineral insulating oil were investigated 

experimentally under low electrical discharge. 

Based on the results, it can be concluded that there is 

a correlation between changes in functional groups 

and the increase in the loss factor and conductivity 

within the mineral oil. This can be explained by the 

increase in the polar product. The frequency domain 

spectroscopy’s results show that the electrical 

discharge with time elapsed, produce charge carriers 

and moisture in mineral oil and influence the 

conduction phenomena. As a result, the dissipation 

factor increases. The FTIR spectra confirmed that 

the aging changes in the investigated mineral oil are 

mainly caused by the scission breaking of some of 

the C-H and C-C bonds leading to the formation of 

fault gases such as hydrogen, methane, ethane, 

ethylene or acetylene that are dissolved in the oil. 

The FTIR measurements provided the 

information on different functional groups existing 

in the sample molecules and also the gases released 

during the electrical aging process. The results 

indicate that various gases and moisture particles 

such as CH4, C2H6, C2H4, and H2O are dissolved, 

as a result of electrical discharge in the oil. 

The correlation between these two methods 

proves the high impact of the dissolved decay 

products in the aging of mineral oil as presented in 

the theory. The FTIR method may possibly be used 

for diagnostic and monitoring of mineral oil 

comparing the optical spectra of aged transformer oil 

with reference one. By means of an evaluation of all 

the obtained results, it can be confirmed that FTIR 

can directly monitor the degradation features from 

the spectral data analyses. The root cause of oil’s 

properties degradation such as moisture, oxidation 

and other dissolved decay, can be correlated with the 

dielectric properties. 
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